JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

III Year – I Semester	L	Т	Р	С
	3	0	0	3

DIGITAL COMMUNICATIONS

UNIT I:

PULSE DIGITAL MODULATION: Elements of digital communication systems, advantages of digital communication systems, Elements of PCM: Sampling, Quantization & Coding, Quantization error, Companding in PCM systems. Differential PCM systems (DPCM), Delta modulation, its draw backs, adaptive delta modulation, comparison of PCM and DM systems, noise in PCM and DM systems

UNIT II:

DIGITALMODULATIONTECHNIQUES:Introduction,ASK,FSK,PSK,DPSK,DEPSK,QPS K,M-aryPSK,ASK,FSK,similarityofBFSKandBPSK.

UNIT III:

DATA TRANSMISSION: Base band signal receiver, probability of error, the optimum filter, matched filter, probability of error using matched filter, coherentreception, non-coherent detection of FSK, calculation of error probability of ASK, BPSK, BFSK, QPSK.

UNIT IV:

INFORMATION THEORY: Discrete messages, concept of amount of information and its properties. Average information, Entropy and its properties, Information rate, Mutual information and its properties

SOURCECODING: Introductions, Advantages, Shannon's theorem, Shanon-

Fanocoding,Huffman coding, efficiency calculations, channel capacity of discrete and analog Channels, capacity of a Gaussian channel, bandwidth–S/N trade off.

UNIT V:

LINEAR BLOCKCODES: Introduction, Matrix description of Linear Block codes, Error detection and error correction capabilities of Linear block codes, Hamming codes, Binary cyclic codes, Algebraic structure, encoding, syndrome calculation, BCH Codes.

CONVOLUTIONCODES: Introduction, encoding of convolution codes, time domain approach, transform domain approach. Graphical approach: state, tree and trellisdiagramde coding using Viterbi algorithm.

TEXTBOOKS:

- 1. Digital communications- Simon Haykin, JohnWiley, 2005
- 2. Digital and Analog Communication Systems -SamShanmugam, JohnWiley, 2005.

REFERENCES:

- 1. Principles of Communication Systems-H.Tauband D. Schilling, TMH, 2003
- 2. Digital Communications–John Proakis, TMH, 1983.
- 3. Communication Systems Analog & Digital-Singh & Sapre, TMH, 2004.
- Modern Digital and Analog Communication Systems–B.P.Lathi, ZhiDing, Hari Mohan Gupta, Oxford University Press, 4th Edition, 2017

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Course Outcomes:

After going through this course the student will be able to

- 1. Analyze the performance of a Digital Communication System for probability of error and are able to design a digital communication system.
- 2. Analyze various source coding techniques.
- 3. Compute and analyze Block codes, cyclic codes and convolution codes.
- 4. Design a coded communication system.